短期氧污染对二氧化碳管道内壁顶部腐蚀的影响研究

侯禹岑, 梁沛楠, 冯兆缘, 齐亮, 徐云泽, 王明昱

装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 97-105.

PDF(12675 KB)
PDF(12675 KB)
装备环境工程 ›› 2026, Vol. 23 ›› Issue (1) : 97-105. DOI: 10.7643/ issn.1672-9242.2026.01.011
船舶及海洋工程装备

短期氧污染对二氧化碳管道内壁顶部腐蚀的影响研究

  • 侯禹岑1, 梁沛楠1, 冯兆缘2, 齐亮2, 徐云泽1,3, 王明昱1*
作者信息 +

Effect of Short-term O2 Contamination on Top-of-line Corrosion in CO2 Pipelines

  • HOU Yucen1, LIANG Peinan1, FENG Zhaoyuan2, QI Liang2, XU Yunze1,3, WANG Mingyu1*
Author information +
文章历史 +

摘要

目的 针对管道内壁顶部腐蚀问题,系统探究CO2与O2交互作用下冷凝液滴环境中碳钢腐蚀的动态演变过程。方法 采用丝束电极(WBE)技术持续监测表面宏电池电流的动态演变,同时借助电化学阻抗谱(EIS)解析典型位置的局部微电池腐蚀差异。结果 当环境由CO2转为O2时,WBE表面宏电池电流急剧升高,阴阳极分布重构,局部阳极电流显著集中。EIS分析进一步揭示,微电池腐蚀行为受腐蚀产物膜特性与氧扩散过程协同调控。结论 短期氧污染会显著加剧二氧化碳管道内壁顶部的宏电池电流腐蚀过程,增加液滴边缘局部未成膜区域的点蚀风险。

Abstract

To address the top-of-the-line corrosion (TLC) phenomenon, the work aims to systematically investigate the dynamic corrosion mechanisms of carbon steel under condensate droplets in CO2-O2 mixed environments. The wire beam electrode (WBE) technique was employed to continuously monitor the dynamic evolution of surface macro-cell currents. Simultaneously, the electrochemical impedance spectroscopy (EIS) was applied to analyze localized micro-cell corrosion variations at representative positions. When the environment shifted from CO2 to O2, the macro-cell currents on the WBE surface increased sharply, accompanied by redistribution of anodic and cathodic areas and significant localization of anodic currents. EIS analysis revealed that the micro-cell corrosion behavior was predominantly governed by the synergistic effects of corrosion product film formation and oxygen diffusion dynamics. The findings indicate that short-term O2 contamination significantly accelerates the macro-cell corrosion process at the pipeline's top-of-the-line area in CO2 environments. Furthermore, the study identifies an increased pitting corrosion risk in the film-free areas along the droplet's inner edge.

关键词

顶部腐蚀 / 氧污染 / 二氧化碳腐蚀 / 丝束电极 / 局部腐蚀 / 宏电池电流 / 微电池电流

Key words

top-of-line corrosion (TLC) / O2 contamination / CO2 corrosion / wire beam electrode (WBE) / localized corrosion / macro-cell current / micro-cell current

引用本文

导出引用
侯禹岑, 梁沛楠, 冯兆缘, 齐亮, 徐云泽, 王明昱. 短期氧污染对二氧化碳管道内壁顶部腐蚀的影响研究[J]. 装备环境工程. 2026, 23(1): 97-105 https://doi.org/10.7643/ issn.1672-9242.2026.01.011
HOU Yucen, LIANG Peinan, FENG Zhaoyuan, QI Liang, XU Yunze, WANG Mingyu. Effect of Short-term O2 Contamination on Top-of-line Corrosion in CO2 Pipelines[J]. Equipment Environmental Engineering. 2026, 23(1): 97-105 https://doi.org/10.7643/ issn.1672-9242.2026.01.011
中图分类号: TG172   

参考文献

[1] 刘梁华, 张世富.海底管道发展现状浅述[J].中国储运, 2011(11): 108-109.
LIU L H, ZHANG S F.Brief Introduction to the Development Status of Submarine Pipeline[J].China Storage & Transport, 2011(11): 108-109.
[2] KAISER M J.A Review of Deepwater Pipeline Construction in the U.S.Gulf of Mexico-Contracts, Cost, and Installation Methods[J].Journal of Marine Science and Application, 2016, 15(3): 288-306.
[3] 孙宇, 常炜, 杨翔堃, 等.海底管道腐蚀防护状态检测方法[J].装备环境工程, 2021, 18(1): 104-109.
SUN Y, CHANG W, YANG X K, et al.A Detection Method for Corrosion Prevention Status of Submarine Pipelines[J].Equipment Environmental Engineering, 2021, 18(1): 104-109.
[4] 吾兰·巴克达什, 刘建国, 李自力, 等.油气输送管道多相流磨损腐蚀的研究现状与进展[J].装备环境工程, 2017, 14(3): 112-116.
WULAN B K D S, LIU J G, LI Z L, et al.Research Status and Progress in Erosion-Corrosion of Oil and Gas Transmission Pipelines in Multiphase Flow[J].Equipment Environmental Engineering, 2017, 14(3): 112-116.
[5] 张伟刚, 赵会军, 周立辉, 等.湿气管线的顶部腐蚀研究进展[J].腐蚀科学与防护技术, 2015, 27(5): 492-496.
ZHANG W G, ZHAO H J, ZHOU L H, et al.Research Progress on Top Corrosion of Wet Gas Pipeline[J].Corrosion Science and Protection Technology, 2015, 27(5): 492-496.
[6] GUNALTUN Y.M., SUPRIYATMAN D., ACHMAD J.Top-of-Line Corrosion in Gas Lines Confirmed by Condensation Analysis[J].Oil & Gas Journal, 1999, 97(28): 64-72.
[7] LI J H, XIE F, WANG D, et al.Corrosion of X80 Steel in a Wet Gas Pipeline under the Top-of-the-Line Environment[J].Journal of Electroanalytical Chemistry, 2022, 912: 116269.
[8] FOLENA M C, BARKER R, PESSU F, et al.CO2 Top-of-Line-Corrosion; Assessing the Role of Acetic Acid on General and Pitting Corrosion[J].Corrosion, 2021, 77(3): 298-312.
[9] AL-MOUBARAKI A H, OBOT I B.Top of the Line Corrosion: Causes, Mechanisms, and Mitigation Using Corrosion Inhibitors[J].Arabian Journal of Chemistry, 2021, 14(5): 103116.
[10] SHEN M, FURMAN A, KHARSHAN R, et al.Development of Corrosion Inhibitors for Prevention of Top of the Line Corrosion (TLC)[C]//Corrosion 2013.Orlando: NACE International, 2013.
[11] 万泊宏.渤海某油田海底管道腐蚀防护用缓蚀剂的开发与应用[J].石油化工腐蚀与防护, 2021, 38(6): 22-25.
WAN B H.Development and Application of Corrosion Inhibitors for Submarine Pipelines at Oilfield in Bohai Sea[J].Corrosion & Protection in Petrochemical Industry, 2021, 38(6): 22-25.
[12] SINGER M.Top-of-the-Line Corrosion[M]//Trends in Oil and Gas Corrosion Research and Technologies.Amsterdam: Elsevier, 2017: 385-408.
[13] 蒋秀, 屈定荣, 刘小辉.湿气管线的顶部腐蚀研究概况[J].中国腐蚀与防护学报, 2011, 31(2): 86-90.
JIANG X, QU D R, LIU X H.Research Development of Top of Line Corrosion (TlC) in Wet Natural Gas Pipelines[J].Journal of Chinese Society for Corrosion and Protection, 2011, 31(2): 86-90.
[14] BARKER R, BURKLE D, CHARPENTIER T, et al.A Review of Iron Carbonate (FeCO3) Formation in the Oil and Gas Industry[J].Corrosion Science, 2018, 142: 312-341.
[15] VITSE F, NEŠIĆ S, GUNALTUN Y, et al.Mechanistic Model for the Prediction of Top-of-the-Line Corrosion Risk[J].Corrosion, 2003, 59(12): 1075-1084.
[16] 封子艳, 崔铭伟, 高志亮.CO2环境中管内外温差对X65湿气管线顶部腐蚀的影响[J].天然气化工(C1化学与化工), 2021, 46(5): 74-80.
FENG Z Y, CUI M W, GAO Z L.Effect of Temperature Difference Inside and Outside the Pipe on Top Corrosion of X65 Wet Gas Pipeline in CO2 Environment[J].Natural Gas Chemical Industry, 2021, 46(5): 74-80.
[17] WANG M Y, TAN M Y, ZHU Y S, et al.Probing Top-of-the-Line Corrosion Using Coupled Multi-Electrode Array in Conjunction with Local Electrochemical Measurement[J].npj Materials Degradation, 2023, 7: 16.
[18] WANG M Y, ZHAO X Y, GAO S, et al.Visualizing and Understanding Corrosion Evolution beneath a Condensed Droplet Using the Multi-Electrode Array[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 684: 133252.
[19] SUN J B, SUN C, ZHANG G A, et al.Effect of O2 and H2S Impurities on the Corrosion Behavior of X65 Steel in Water-Saturated Supercritical CO2 System[J].Corrosion Science, 2016, 107: 31-40.
[20] WANG W H, SHEN K L, TANG S, et al.Synergistic Effect of O2 and SO2 Gas Impurities on X70 Steel Corrosion in Water-Saturated Supercritical CO2[J].Process Safety and Environmental Protection, 2019, 130: 57-66.
[21] LIN X Q, LIU W, WU F, et al.Effect of O2 on Corrosion of 3Cr Steel in High Temperature and High Pressure CO2-O2 Environment[J].Applied Surface Science, 2015, 329: 104-115.
[22] HUA Y, BARKER R, NEVILLE A.The Effect of O2 Content on the Corrosion Behaviour of X65 and 5Cr in Water-Containing Supercritical CO2 Environments[J].Applied Surface Science, 2015, 356: 499-511.
[23] ROSLI N R.The Effect of Oxygen in Sweet Corrosion of Carbon Steel for Enhanced Oil Recovery Applications[D].Ohio: Ohio University, 2015.
[24] ROSLI N R, CHOI Y S, YOUNG D.Impact of Oxygen Ingress in CO2 Corrosion of Mild Steel[C]//Corrosion 2014.San Antonio: NACE International, 2014.
[25] HE L M, ZHANG Q L, CHEN W B, et al.Unraveling Short-Term O2 Contamination on under Deposit Corrosion of X65 Pipeline Steel in CO2 Saturated Solution[J].Corrosion Science, 2024, 233: 112113.

PDF(12675 KB)

Accesses

Citation

Detail

段落导航
相关文章

/